俺人〜OREGIN〜俺、バカだから人工知能に代わりに頑張ってもらうまでのお話

このブログでは人工知能(AI)の多角的な側面を深く掘り下げ、その理論と実践の両面を探求していきます。データから知見を引き出す手法の解説に加え、AIが社会に与える影響や、健全な発展に向けたガバナンスの重要性にも焦点を当てます。視覚情報や言語情報、その他の多様なデータを活用した予測モデルの構築を通じて、AIがどのように現実世界の問題解決に貢献できるかを調査・発信していきたいと思います。

scikit-learn

グリッドサーチでハイパーパラメータを調整する(Pythonによるスクレイピング&機械学習テクニック)

今回は、グリッドサーチでハイパーパラメータを調整しました。 これまで、学習モデルは、特に引数を指定しないか、特定の値のみ指定して学習をおこなっていました。この「引数」は、学習時に更新されていくパラメータとは区別して、「ハイパーパラメータ」と…

クロスバリデーションでモデルの妥当性を検証する(Pythonによるスクレイピング&機械学習テクニック)

今回は、クロスバリデーションという手法でモデルの妥当性を検証しました。 学習したデータに対してとても良い精度を出すモデルであっても、予測が必要な新たなデータに対する精度が非常に低い、いわゆる「過学習」という状態になることが良くあります。こう…

ランダムフォレストでキノコを分類する(Pythonによるスクレイピング&機械学習テクニック)

今回は、Webからキノコに関するデータをダウンロードして、ランダムフォレストで分類を行いました。 これまでは、数学的に境界を決定して分類するSVM(サポートベクターマシン)という学習モデルを使ってきましたが、今回は、「ランダムフォレスト」という多…

SVMで言語を判定する(Pythonによるスクレイピング&機械学習テクニック)

今回は、Webから取得したテキストファイルを読み込ませて、それが何語で書かれたテキストなのかを判定しました。 機械学習の一大テーマである自然言語処理の復習です。(そこまで大掛かりなことをやっているわけではないですが・・・。) 今回も Pythonによ…

SVMでMNISTのデータを画像分類する(Pythonによるスクレイピング&機械学習テクニック)

今回は、前回CSVに変換したMNISTの手書き文字画像を、0〜9に分類しました。 機械学習の一大テーマである画像分類の復習です。 今回も Pythonによるスクレイピング&機械学習開発テクニック増補改訂 Scrapy、BeautifulSoup、scik [ クジラ飛行机 ]の第4章…

scikit-learnのSVMを使ってアヤメの品種を分類する(Pythonによるスクレイピング&機械学習テクニック)

今回は、scikit-learnのSVMを使って、アヤメの品種を分類できるようになりました。花びらの長さや幅などの特徴量から品種を分類するということで、本格的に機械学習となってまいりました。 Pythonによるスクレイピング&機械学習開発テクニック増補改訂 Scra…

scikit-learnのSVMを使った入門編としてXOR演算を学習させる(Pythonによるスクレイピング&機械学習テクニック)

今回は、scikit-learnのSVMを使って、入門編としてXOR演算を学習させました。ついに機械学習の章に入ってきて、テンションも上がります。最近実践中心だったので、基礎からもう一度学び直したいと思います。 Pythonによるスクレイピング&機械学習開発テクニ…